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ABSTRACT 

A modified  form of Ohm's law,  describing electric currents through  ion tracks, is  presented as a 

tool for future  theoretical  modeling efforts related  to  charge  collection  from  ion  tracks  in silicon 

devices. The  equation is rigorously  derived  from  the  driWdiffusion  equations,  and  accounts for 

all currents  (electron  and  hole,  drift  and  diffusion).  While  only  one  quantitative  result is given, a 

fairly  complete  description of charge  collection  from  ion  tracks in  silicon  diodes  is  qualitatively 

discussed. 

The  work described in this  paper was carried  out  by  the  Jet  Propulsion  Laboratory,  California  Institute of 
Technology, under  contract  with  the  National  Aeronautics  and Space Administration  Code S. Work  funded  by  the 
NASA Microelectronics  Space  Radiation  Effects  Program  (MSREP). 
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I. Introduction 

Single event  effects  can  occur in a semiconductor  device when an energetic  charged  particle 

moving  through  the  device  creates a column,  or  track, of  mobile electron-hole  pairs.  These 

carriers  can  then  produce  currents,  via drifvdiffusion, which  may  lead to an  unwanted  device 

response.  The  simplest  and  most  familiar  illustration of currents  produced by  ion tracks  consists 

of a reverse-biased  silicon  diode  containing a p-n junction  depletion  region (DR) above a 

uniformly  doped  quasi-neutral  substrate,  as  shown in Fig. 1. Carriers  liberated by  an  ion  track 

produce a current  through  the  diode,  which  can  sometimes  create  unwanted effects in external 

circuits  that  respond to the  diode  current.  Theoretical  predictions of single event effects require 

an understanding of charge  transport  in  the  presence of an ion  track,  and  the  subject  of  track 

conductivity  sometimes  becomes  relevant. A number of investigators  in  the  single  event  effects 

community  believe  that  high-density  ion  tracks  in  quasi-neutral  regions  are  nonconductive, 

except  near  the  outer  regions of the  track  where  the  carrier  density  is less than  the  doping  density. 

An objective of this  paper  is  to  first  argue  that this is not true,  and  then to derive a modified  form 

of Ohm’s  law  governing  electric  currents  through  ion  tracks. 

Underlying  the  idea  that a track  is  relatively  nonconductive is the  idea  that a current  requires a 

charge  separation. If this  were  true, an ion  track in a quasi-neutral  medium would be almost 

nonconductive,  because  quasi-neutrality  severely  restricts  charge  separation. In reality, a current 

does  not  require a charge  separation,  because  carriers  leaving a volume  element  can  be  replaced 

by others  moving  in. An exception  occurs  when  there  is  cylindrical  symmetry  with  no 

longitudinal  current. In this case  there  is  no way to replace  carriers  near  the  track  center  line, so a 

net  radial  current does imply a charge  separation,  hence  there is no  net  radial  current  (electrons 

and  holes  are  constrained  to  move  together). This exceptional  case  describes a longitudinally 

uniform  track,  expanding  radially by diffusion,  in a device  having  no  electrical  contacts. 

However,  for  the  more  relevant  case of a device  that  does  have  electrical  contacts so that 

longitudinal  currents can flow,  there  can be a strong  conduction  current  through  the  track,  even 

through  track  sections  that  remain  approximately  longitudinally  uniform  while  expanding 

radially by diffusion.  Electrons  and  holes  need  not  move  together to  avoid a charge  separation, 
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because  carriers  can  replace  other  carriers. A textbook by Feldman [ 11 discusses  this  via an 

analogy with a  traffic jam, which  does  not stop the traffic but does cause the  cars  to  form  a  high- 

density  cluster.  Cars  can  leave  this  traffic jam and  be  replaced by others  moving in (there  can  be 

a  “car  current”)  even if the  location  and  length  of  the  high-density cluster does  not  change  at  all. 

The  carrier  density  along an  ion  track  is  usually  described  by  the  ambipolar  diffusion  equation, 

but  this  equation  describes  only  the  carrier  density  function,  and  says  very  little  about  carrier 

flow.  Substituting  terminology  from  Feldman’s  traffic jam analogy,  we  would  say  that  ambipolar 

diffusion  describes  the  car  cluster  density as a  function of time  and  spatial  coordinates,  but  says 

nothing  about  the  rate  that  cars  move  through  the  traffic jam. There  are, of course,  differences 

between  a  traffic jam and  charge  transport.  However,  whether we are  discussing  cars  responding 

to traffic, or carriers  responding to driftldiffusion,  it  is  still  true  that  density  and  flow  are  different 

quantities,  and  a  flow  does  not  require  a  change  in  density.  Feldman’s  analogy is a  visual 

illustration of this very  general  statement. As previously stated, the  ambipolar  diffusion  equation 

may  describe  the  carrier  density  function,  but  says  very little about carrier flow.  The  present 

paper  goes  a  step  beyond  Feldman’s  discussion by deriving  a  modified  form of  Ohm’s  law, 

which  does  say  something  about  carrier  flow. 

Taken  by itself,  the  one  equation  derived  here  is  not  enough to calculate  collected  charge.  Only 

one  quantitative  result is given,  containing  more  unknowns  than  equations,  while  a  complete 

quantitative  analysis  would  provide as many equations as unknowns.  Therefore,  this  result is 

only a  tool for future  theoretical  work.  However,  this  result  does  contribute  to  physical  insight. 

Also,  a  fairly  complete  description  of  charge  collection  from  ion  tracks  in  silicon  diodes  is 

discussed  qualitatively. 

II. Limitations 

Several  sources of uncertainty  should  be  acknowledged. The analysis to follow  is  based  on  the 

driftldiffusion (DD) equations  in  a  uniformly  doped  quasi-neutral  silicon  substrate. It could be 

argued  that  the DD equations may  be  inadequate for the  extreme  conditions  (large  carrier 

densities  and  density  gradients)  typical of  an  ion track. If true,  this  would  have  far  reaching 
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implications  regarding  nearly  every  computer  simulation  to  date  of  charge  collection  from  ion 

tracks.  While  some  of  the  more  recent  computer  codes  utilize  transport  equations  that  are  more 

versatile than the DD equations [2], most  simulations  to  date  are  based on these  equations. 

However, it is  acknowledged  that  these  equations  could  have  limitations. 

Another  source  of  uncertainty  is in the  Einstein  relation  used  to  calculate  diffusion  coefficients 

from  mobilities.  The  doping  density  will  be  assumed  to  be  light  enough  for  Maxwell-Boltzmann 

statistics  to  apply,  which  is  one  necessary  condition  for  the  classical  Einstein  relation  to be  valid, 

but  there may still be other  complications. In particular, a theoretical  analysis 131 concluded  that 

carrier-carrier  scattering (CCS) affects  the  Einstein  relation in  such a way so that  the  ambipolar 

diffusion  coefficient is not  affected  by CCS, even  though  mobilities  are  affected.  However, 

experimental  measurements [4] indicate  that  the  ambipolar  diffusion  coefficient is affected by 

CCS, and  the  affect  is  consistent  with  the  assertion  that  the  Einstein  relation  is not affected,  i.e., 

the  classical  Einstein  relation  applies.  Hence,  there  may  be  some  uncertainty  here. 

Another  complication  is  that  the  quasi-static  Poisson  equation may have  some  limitations if 

transients  are  too  fast.  This  equation  contains a well-defined  (low-frequency)  dielectric  constant, 

and may  not be appropriate  when  transients  are  too  fast  relative  to  the  dielectric  relaxation  time. 

It  is  not  the  intention  here  to  resolve  the  above  issues.  These  issues  are  mentioned  only  to 

acknowledge  that  the  results  presented  here  may  have  limitations.  The DD equations,  the 

classical  Einstein  relation,  and  the  quasi-static  Poisson  equation  are  the  postulated  equations  for 

the  analysis to follow.  The  intention  is to point  out  what  these  equations  imply,  i.e.,  what 

happens  under  those  conditions  in  which  the  postulated  equations do apply. It is taken  for  granted 

here  that  some  useful  concepts  can be learned by investigating the  implications of these 

equations,  even if  they do have some  accuracy  limitations. 

There  is  one  more  limitation.  The  electron  and  hole  mobilities may vary throughout  the quasi- 

neutral  region  (e.g.,  due  to an electric  field  or CCS), but a simple  analysis  can  only  be  used if 

these  mobilities  are  approximated in  such a way so that  the  ratio of the  electron  to  hole  mobility 

is  spatially  uniform  throughout  the  uniformly-doped  quasi-neutral  region.  This  limitation may 
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seem more acceptable if we  recall  that  mobility  models  including CCS are  still  highly  uncertain. 

If we  can believe  that  useful  concepts  can  be  learned  from  computer  simulations  using  uncertain 

mobility  models,  then it is  also  reasonable to believe  that  useful  concepts  can be  learned  by 

investigating  the  analytically  tractable  case of a spatially  uniform  mobility  ratio in the  quasi- 

neutral  region.  Note  that  the  motivation for analytical  calculations  is  rarely to obtain  greater 

quantitative  accuracy  than a computer  simulation.  The  motivation  is  typically  to  discover 

fundamental  concepts, as opposed to merely  observing  the  final  result  from a complex set of 

interactions  for  some  specific  case.  When  this  is  the  objective,  analytical  tractability  usually  has a 

higher  priority  than  quantitative  accuracy.  Note  that a spatially  uniform  mobility  ratio is not 

required  because  it  gives a device  some  special  properties,  it  is  required  because  it  makes  the 

equations so much  easier to write. 

The  above  limitations  are  the  only  known  limitations. In particular,  the  mathematical  steps 

applied to the  stated  assumptions  are  equally  valid  whether  the  excess  carrier  density is much less 

than, on the  order  of, or much  greater  than  the  doping  density.  Therefore,  there  are  no  additional 

restrictions  regarding how  large  or  small  the  carrier  density  may  be,  beyond  the  restrictions 

implicitly  contained  in  the  above  limitations. 

III. Distinct  Device  Regions 

Before  starting an analysis  applicable to quasi-neutral  regions, it should first be  pointed  out  that 

such  regions exist (according to the  DD  equations),  at  least for the  simple  device  illustrated  in 

Fig. 1.  One  of the  things  learned  from  computer  simulations  is  that,  even  in  the  presence of  an  ion 

track,  silicon  diodes  having a uniformly  doped  substrate  show a reasonably  well-defined  DR 

boundary ( D m )  separating  the DR (a  strong  space-charge  region)  from a quasi-neutral  region. 

The  latter  region  is  defined by the  property  that  the  charge  imbalance  (measured as a density of 

elementary  charges)  is  small  compared to the  majority  carrier  density.  Although  the  DR  and 

quasi-neutral  region  have  been  discussed by  many investigators  for many  years,  it is not  yet 

common  practice  to  plot  computer  simulation  data in a way  that  clearly  reveals  these  regions. 

Because  these  regions  are  defined by the  presence of or near-absence of a space  charge,  they  are 
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most  clearly  seen by plotting  electron  and  hole  densities,  together on the  same  graph,  against a 

spatial  coordinate. An example  is  shown in Fig.2, which plots  electron  and  hole  densities  against 

depth  along  the  track  center  line for a diode  containing an n+ diffusion  above a p-type substrate, 

and with a normal  incident  track  hitting  the  center  of  the  device.  Because  Fig.2  is  intended  only 

for illustration, we omit a detailed  discussion of the  computer  simulation  code  and  input  data. 

Interested  readers  can  refer  to an earlier  paper for this discussion [5]. The  present  Fig.2  uses data 

from  the  Baseline  case  at  t=0.366 ns  in  the earlier  paper,  and  shows an  n'-p portion of an n+-p-p+ 

epi  diode.  The  carrier  densities  greatly  exceed  the  doping  density  (<10'5/cm3)  near  the  DRB in 

this  figure, so quasi-neutrality  is  recognized by the  condition  that  the  electron  and  hole densities 

be  nearly  equal.  Note  the  striking  contrast  between  two  distinct  regions  in this figure,  making a 

DRB  reasonably  well  defined. 

The DR  width  in  the  device  represented by Fig.2  was  about 3 pm  prior to the  ion  hit,  while  the 

width  shown  in  the  figure  is  less  than 1 pm. The DR  is  smaller  (and  the  quasi-neutral  region 

larger)  following an ion  hit  then it was prior to the  hit.  This  is  because a strong  electric  field  in 

the DR  quickly  produces a redistribution of carriers  liberated by the  ion  track,  until  many  of  the 

previously  unshielded  impurity  ions  become  shielded by carriers. A portion of the  device 

contained  unshielded  impurity  ions  prior to the  hit,  which  then  became  shielded  after  the  charge 

rearrangement.  This  portion  was a space-charge  region  prior to the  hit  but  becomes  quasi-neutral 

after  the  rearrangement,  i.e.,  part of the  pre-ion-hit DR becomes  part  of  the  post-ion-hit  quasi- 

neutral  region.  Hence  the DR shrinks  and  the  quasi-neutral  region  expands, so the  DRB  initially 

moves  up in Fig. 1.  After  this  initial  collapse,  the  DRB  moves  down (it is  moving to the  right  in 

Fig.2) as the  DR  recovers  and  regains its initial  width.  Until  this  recovery  is  complete,  the DR is 

in a partially  collapsed  state.  The  time  required for a complete  recovery is typically  measured  in 

ns. 

It  is  interesting  that  there  are  virtually  no  majority  carriers in the DR  in Fig.2,  except  very close 

to the  DRB. The vertical  scale  could be extended many  more  decades  downward,  and  the 

majority  carrier  density  would  still  be  out of the  plotted  range.  The  explanation  is  that  after  the 

majority  carriers  are  driven  out  during  the  initial  collapse,  they  are  not  replaced.  They  cannot 

move  more  than a small  distance  into  the DR from  the  quasi-neutral  region,  because of a strong 
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opposing  electric  field in the DR. If the DRB were  stationary, it would  block  the  majority  carrier 

current.  There  are  some  minority  carriers in the  DR,  because  minority  carriers  can  enter  from  the 

quasi-neutral  region  to  replace  those  that  have  been  driven  out  to  the  left  in  Fig.2.  However,  the 

minority  carrier  density  in  the  DR  is  much  less than in the  quasi-neutral  region. 

An implication,  first  discovered by Hsieh et al. [6 ] ,  of a collapsed or partially  collapsed  DR, is 

that  it  supports  much  less  device  voltage  than it did  prior to the  hit.  Much  of  the  voltage  (applied 

plus  built-in)  formally  across  the DR  is  now across  the  quasi-neutral  region.  This  is  the 

phenomenon  that  has  been  called  funneling 161. 

It  was  tacitly  assumed  in  the  above  discussion  that the DR collapse is caused by a direct  ion  hit 

to the  DR,  liberating  carriers  within. If the  tract  misses  the DR, there  can still be a collapse 

producing a voltage  across  the  quasi-neutral  region.  However,  this  collapse is gradual  because 

carriers  must first diffuse into the  DR  from  outside to produce  the  collapse. In this case,  there is 

no  clear  distinction  between a collapse  stage  and  recovery  stage  (the  recovery  stage  is  generally 

defined  here to begin  after  the  collapse  is  complete)  because  both  are  gradual  processes,  and a 

DRB  is  reasonably  well  defined  at  all  times.  For  the  more  violent  case of a direct  hit to the  DR, 

the  collapse is very fast  because  the  strong  electric  field  within  the  DR  rearranges  carriers 

liberated within very  quickly  until  the  screening  effect is established  and  recovery  begins. 

However, this initial  charge  rearrangement  is  not  instantaneous,  and  some  peculiar  things  might 

occur  during  this  time. In particular,  it  is  not  yet  clear  whether a DRB is  defined  during  this  time. 

However,  because  the  time  duration of this  process  is so short,  simulations  (at  least  those 

performed by this  author)  have  not  yet  found a significant  amount of charge collection at the 

device  terminals  during  this  time.  Nearly  all  charge  collection  occurs  during  the  recovery  stage 

when  the  DRB  is  reasonably  well  defined. 

The  conclusion  from  the  above  discussion is that,  whether or not  there is a direct  ion  hit to the 

DR,  most  (or  all)  charge  collection  occurs  when  there  is a reasonably  well-defined  DRB,  i.e., 

when  the device  contains  distinct  regions  consisting of a DR  and a quasi-neutral  region.  The 

distribution of the  potential  and  current  within  the  quasi-neutral  region  is  the  subject of the 

sections  to  follow.  However,  it  can be  pointed  out  now  that  quasi-neutrality  merely  means  that 
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the  charge  imbalance  is  small  compared to the  majority  carrier  density. This does  not  imply  that 

the  charge  imbalance  is  too  smaiI  to  significantly  contribute  to  the electric field.  The  potential 

distribution within the  quasi-neutral  region is profoundly  affected by the  charge  imbalance in this 

region,  in  much  the  same  way as space  charges in the  interior of a simple resistor  having an 

inhomogeneous  conductivity  produce  the  irregular  field  pattern  required by Ohm’s  law  in  such  a 

device. 

IV. P-Twe Versus  N-type  Substrates 

The  conclusion  from  the  above  section,  that  a  moving  DRB  separates  distinct  device  regions, 

will  not be contradicted in this  section,  but one rather  casual  statement  in  the  previous  section 

does  warrant  some  additional  discussion.  The  statement  was  that  a  collapsed  DR  supports  much 

less  device  voltage than it  did  prior  to the ion  hit. In reality,  a  DR  can  have  a  significantly 

reduced  width  and  still  retain  nearly  all  of  its  previous  voltage.  Whether  a  DR  does or does  not 

give  up  a  significant  amount  of  its  voltage to another  device  region is strongly  dependent on 

whether  the  device  substrate  is  n-type or p-type. A large  voltage  across  the  quasi-neutral  region  is 

much easier to obtain  when  the  substrate is p-type. 

Fundamental  differences  between  n+-p  and  p+-n  diodes  were  theoretically  predicted for steady- 

state  conditions [7], which  can  be  obtained by replacing  the  impulsive  ion-induced  carrier 

generation  with  a  track  that  continues to generate  carriers at a  rate  that is constant in time.  The 

steady-state  analysis  is  unreliable for predicting  that  various  phenomena  will  occur  under 

transient  conditions,  but  some  predictions  were  found to apply to transient  conditions, so it  is 

interesting to consider  what  the  steady-state  analysis  predicts. The analysis  predicts  that  bulk 

diodes  having  either  doping  type  will  display  qualitatively  similar  phenomena  (the  DR  gives  up 

much  of its  voltage to the  quasi-neutral  region) if a  high-density  track is contained  within  a 

sufficiently  small  distance  from  the DR.  However,  if  this  condition  is  not  satisfied  (e.g.,  if  the 

track  is either too far  from  the DR or  too  long),  the  analysis  predicts that the DR  will  retain 

nearly  all of its  voltage  for  the  n-type case, but  not  for  the  p-type  case. This prediction is 

consistent with a  computer  simulation of  an epi diode  under  transient  conditions [5]. The  track 
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was  longer  than  the  epi-layer  thickness,  which  qualifies as “too  long”  for  a  device with an n-type 

substrate.  While  a  p-type  case  under  the  same  conditions  displayed  a  significantly  reduced 

voltage  across  the  DR,  the DR for  the  n-type case retained  nearly  all of its  voltage  (although  the 

DR width  was  significantly  reduced),  even  though  the  carrier  density  greatly  exceeded  the  doping 

density at  the D M .  The  steady-state  and  epi  cases  are  both  rather  extreme  in  the  sense  that  the 

amount  of  voltage  lost  by  the  DR is  extremely  small  for  the  n-type  substrate. A bulk  diode  under 

transient  conditions  is  less  extreme  in this respect,  but  still  shows  that a DR  can  retain  most of its 

voltage  for  the  n-type  substrate,  as  illustrated  below. 

To compare  doping  types, we first consider  a simple n+-p  diode  having  the  structure  illustrated 

in  Fig. 1. The  diode  contains  a  shallow  n+  diffusion  above  a 100 pm thick  p-type substrate, and  is 

reverse  biased  at 5 V. The simulated  track  was  from  a  normal  incident  center  hit,  is 35 pm  long, 

and  the  ion  linear  energy  transfer  (LET) is 40 MeV-cm2/mg. The computer  simulation  code  and 

input  data  are  discussed  in  more  detail  in an earlier paper [SI. The  present case is identified as the 

“bulk  version”  in  the  earlier  paper.  The  current  peaks  at  about 0.6 ns  after  the  track  formation, so 

this  may  be  an  interesting  time  point  at  which to look at  the  carrier  density  and  potential 

distribution.  The  carrier  density  along  the  track  center  line at this time  point  is  plotted  against 

depth  into  the  device  in  Fig.3.  Although  not  visible  with  the  resolution  shown  in  the figure, the 

DR  width  is  about 0.1 pm  (readers  wondering  why  the DR is much  wider  at 0.366 ns in  Fig.2 

than  at 0.6 ns  in  Fig.3  are  reminded  that  Fig.2  shows  a  section  of an epi  diode,  which  recovers 

faster than a  bulk  diode).  The  potential  along  the  track  center  line  is  plotted  against  depth  in 

Fig.4.  Note  that  only  a  small  voltage  is  across the DR, and  most  of  the device  voltage is across 

the  section of quasi-neutral  region  below  the  track. The potential  difference  across the entire 

device  interior  includes  the  built-in  potential, so this potential  difference  is  slightly  larger  than 

the  applied 5 V. 

We  next  consider  a  p+-n  diode,  which  is  identical to the  n+-p  diode  except  that doping types  are 

interchanged,  and  the  polarity of the  applied  voltage  is  reversed.  Carrier  densities  and  potentials 

for  this  case  are  plotted in Figs.5 and 6.  The  potential  is  plotted with a  reversed  sign for a  more 

direct  comparison  with  the  other  doping  type.  A  profound  difference  between  the  two  doping 

types  now  becomes  clear.  The  DR  retained  most  of  its  voltage  for  this case, even  though  the 
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width  is  greatly  reduced by the  ion  hit  (the  DR  width  is  not  visible with the  resolution  shown in 

Fig.5, but is  about 1 pm,  compared to about 3 pm  before  the ion hit).  Although  the DR already 

has  most  of its  voltage, it is  still in the  process of regaining  its  initial  width, so the DRB is 

moving to the  right in F i g 5  

It  is interesting  that,  excluding  the  left  sections of  the  curves  (which  reflect  different  DR 

widths),  the  carrier  densities  in  Figs.3  and 5 are  very  similar.  This  is  because  the  simulations  used 

the  same  electron  mobility  for  both  doping  types,  and  the  same  hole  mobility  for  both  doping 

types.  Therefore,  the  ambipolar  diffusion  coefficient  is  the  same  for  both  cases. 

There  is a very  slight  difference  between Figs.3 and 5 near  the  right ends of the  track,  with  the 

n+-p case  showing a slightly  more  abrupt  change  in  the  minority  carrier  density.  Even  though this 

difference  is  barely  perceptible  with  the  resolution  shown  in  the  figure,  the  reason  for  it  is  still 

interesting.  The  explanation  is  that  longitudinal  ambipolar  diffusion  does  not  apply  to  the  n+-p 

case  near  the  lower  track  end. The n+-p  case exhibits a very  intense electric field  (implied  by 

Fig.4)  below this depth,  while  the  other  case exhibits a much  weaker field. The  intense  electric 

field  for  the  n+-p  case  opposes  the  downward  diffusion of minority  carriers.  Note  that  majority 

carriers  are  free to enter  this  region. In fact,  such  carriers  are  already  there,  with a density  equal to 

the  doping  density as required by quasi-neutrality  in  the  absence of minority  carriers.  These 

majority  carriers  are  moving in response  to  the intense electric  field  (the  current  is  at  its  peak  at 

this  time  point),  but  the  density  remains  equal to the  doping  density  because  carriers  leaving a 

volume  element  are  replaced by others  moving  in.  However,  the  absence of minority  carriers 

together  with  quasi-neutrality  is  ultimately  responsible for both  minority  and  majority  carrier 

densities  being  what  they  are in the  lower  region, so the  slight  difference  in  track  structures for 

the  two  doping  types  can be described as the  inability of minority  carriers to move  into  the  lower 

region  for  the  n+-p  case. 

The  two  doping  types  would  exhibit  significantly  different  carrier densities near  and  below  the 

lower  track  end  under  steady-state  conditions [7], but  Figs.3  and 5 show  only a very  small 

difference for this transient  problem;  indicating  that  there  has  not  yet  been  enough  time  for a 

significant  downward  diffusion  with  or  without an opposing  electric  field.  The  influence of this 
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electric  field  on  the  carrier  distribution may  not  be  important if minority  carriers  would  not  have 

moved  far into the  lower  region  anyway. Therefore, it may  be adequate  to estimate the  carrier 

density  via  the  ambipolar  diffusion  equation  without  any  modifications to account  for  the  strong 

electric  field  inhibiting  the  downward  diffusion. 

It  was  shown  above  that  the  two  doping  types  can  be  profoundly  different in terms of  how the 

device  voltage  is  divided  between the DR and  quasi-neutral  region. If funneling is defined by the 

condition  that  there  is a large  voltage  across  the  quasi-neutral  region,  then  funneling  is  much 

easier  to  induce for one  case than  the  other.  Fortunately, this does  not  imply  that  the  two  cases 

require  different  methods of analysis for calculating currents.  The  analysis in Sections V and  VI 

applies  to  both  doping types. A low-order  approximation  and a correction  discussed in Sections 

VIII and IX also applies to both  doping types. 

V. A Modified  Ohm's  Law 

The  well-known  drifvdiffusion  equations  and  Poisson's  equation  can  be  written as 

" ap V . J h = - q - + q g - q r  
at 

E V 2 p = q ( N - P )  (3) 

where no and po are the  equilibrium  electron  and  hole densities respectively, N and P are  the 

excess  electron  and  hole  densities  respectively, g and r are  the  generation  and  recombination  rates 
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respectively  (assumed the same for electrons as holes), cp is  the electrostatic  potential, and  the 

other  symbols  have  the  obvious  meanings.  We  also  assume  the  Einstein  relations 

where VT is  the  thermal  voltage  (about 0.026 volts at  room temperature).  The  analysis  is  applied 

to a uniformly  doped  quasi-neutral  region, so the  equilibrium  densities  have  zero  gradients in (1). 

Also, a region is quasi-neutral  when  the  solution  to  the  above  equations  can  be  approximated by 

the solution  to  the  equations  obtained  from  the  limiting  case  as E approaches  zero. In this limit, 

(3) is  replaced by N=P, which  cannot  be  used to solve for cp. However, a closed  system of 

equations  (when  explicit  expressions  are  given for r and  g),  that is capable of solving for both P 

and 9, is obtained by substituting N=P into (1) and (2). Doing so while  using (4) gives 

" ap V * J h = - 4 - + 4 g - q r  
at 

Defining  the  total  current by J-Jh+J,, we conclude  from (5) and (6)  that 

where  the  conductivity Q is defined by 
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Now define A and B by 

ph x [doping  density] 
A =  

pe +ph x [doping  density] 

Using (9), (lo), and (1  l), we  can  write (7) as 

B 
P + A  

for p - type  region 

for n - type  region 

The mobilities may vary throughout  the  quas-neutral  region,  but  to  obtain  equations  that  are 

simple to write, the mobilities  are  assumed to be approximated in  such a way so that  the  ratio of 

the  electron  to  hole  mobility is spatially  uniform  throughout  the  quasi-neutral  region. This results 

in A and B being  spatially  uniform, so (12) can be written  as 

where  the  modified  potential is defined by 

Equation (13) can be verified by substituting  the  definition (14) into (13), use  the  chain  rule  to 

expand  the  gradient,  and  compare  the  result to (12). 
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Note  that  (13) is the  classical  form of  Ohm’s law,  except  that it contains  the  modified  potential 

w instead of the  true  electrostatic  potential cp. Because of this  difference, we will call ( 1  3) a 

modified  Ohm’s  law. 

VI. Integrated  Form of the  Modified  Ohm’s  Law 

For  any  cases of practical  interest,  the  closed  boundary  surrounding a quasi-neutral  region  will 

contain  at  least  two  non-insulated, or active,  boundaries in  which  the  normal  component of the 

total  current may differ  from  zero.  For  example,  Fig. 1 shows  two  active  boundaries  consisting of 

the DRB above and an ohmic  contact  below.  We  look  for an  integrated  form of (13)  which 

applies to two  active  boundaries  and  is  analogous to the  familiar  equation AV=R for resistors. 

The discussion  below  can  easily  be  generalized to many active  boundaries by replacing  the 

analog of AV=R with a matrix  equation, so it  is  sufficiently  general to consider  the case of  two 

active  boundaries  for  illustration. 

The  most  general  case  having  two  active  boundaries  is  shown  in  Fig. 7a. The upper  active 

boundary of the  quasi-neutral  region  is  denoted S2, and  the  values of P and cp on this boundary 

are  denoted P2 and V2, respectively.  Note  that  if P or cp are  not  constant  on S2, it  is  necessary to 

define P2 andor V2 to  be  some  appropriately  weighted  surface  averages of P and cp. Similar 

considerations  apply to SI at  which  the  boundary  values  are  denoted PI and VI. The  arrow  in 

Fig.7a  defines  the  sign  convention for the  current I; it is  positive  when  directed  from S2 to SI, 

otherwise  it  is  negative  (or  zero). The general  case  shown as Fig.7a  includes  many  special  cases, 

such as: the  simple  diode  previously  discussed  (Fig.7b), a uniformly  doped  substrate  between 

two  ohmic  contacts  (Fig.7c),  and a MOS capacitor  (Fig.7d).  The  MOS  capacitor  produces a 

space-charge  region  associated  with  accumulation,  depletion,  or  inversion,  with  changes in the 

space-charge  region  producing  transient  currents.  Another  special  case  included in the  general 

case, but  not  shown in the figures, is an epi diode similar to Fig.7b  except  that  the  lower 

boundary SI is  the  upper  boundary of a high-low  junction  instead of an ohmic  contact. An  ion 

track,  which  can  be  anywhere in the  device,  is  not  shown in the  figures  because  its  influence (as 

well as the  influence  from any other  source of carriers)  is  implicitly  contained in  the  excess 
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carrier  density  function P, which determines  the  conductivity CT. 

Note  that  the  only  difference  between  (13)  and  the  classical  form  of  Ohm’s  law  is  the 

symbolism; we see VI instead of the  true  electrostatic  potential 9. The  integrated  form of ( 1  3) 

must  therefore  be Ayl=IR. Although  we will end  up with this  equation,  some  justification  and 

qualification is warranted  because  there  is  a  complication.  The  classical  integrated  form of 

Ohm’s  law AV=IR is  a DC equation.  A  resistor  that  is  ideal in  the  sense  that  the  point  form of 

Ohm’s  law (J=oE) is exact, may still  not  be  ideal  in  the  sense  that  the  integrated  form  of  Ohm’s 

law (AV=IR) applies  under  transient  conditions.  There  are  two  types of capacitances  that may 

have to be  included  in  the  integrated  equation  under  transient  conditions.  One  type of capacitance 

appears  whether or not CT is  homogeneous. This is the  capacitance  between  electrodes  which  is 

related to surface  charge  densities  on  the  electrode  surfaces.  A  changing  surface  charge  on an 

electrode  will  cause  the  current  through  the  medium  adjacent to the electrode to  differ  from  the 

current  through  the  wire  connected to the  electrode,  in  which  case  it is necessary to make  a 

distinction  between I and I‘ in Fig.7a. 

The  other  type of capacitance  is  relevant  only if CT is  inhomogeneous,  but  that is the  case  that 

must  be  considered. An inhomogeneous  conductivity  results  in  a  space-charge  distribution  in  the 

resistor  interior  in  addition to surface  charges  at  the  electrodes.  The  influence of the  space  charge 

can  be  illustrated by considering  a  one-dimensional  resistor,  which simplifies the  discussion.  A 

space  charge  may be contained  between  two  depths  within  the  resistor. If this  space  charge 

changes  with  time,  the  currents  at  the  two  depths  will  differ.  Another  type of capacitance  is 

needed to account  for  the  space  charge.  Fortunately, (8) implies  that  we  are  treating  a  case  in 

which  this  type of capacitance  does  not  have to be included.  This  equation  implies  that  the 

current  is  the  same  at  all  depths  in  the  one-dimensional  geometry (in three  dimensions,  the 

equation  becomes  a  statement  regarding  surface  integrals of the  current, but  this  statement  is 

analogous to the  one-dimensional  statement).  There  is  a  space  charge  influencing  the  potential 

distribution,  but as long as the  charge  imbalance is small  compared to the  carrier  density,  which 

determines  the  conductivity,  quasi-neutrality  applies, so (8) is  a  valid  approximation  and  implies 

that  the  displacement  current  is  negligible  compared to the  total  current. 
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As discussed  above, (8) implies  that  a  time-varying  space  charge in the  quasi-neutral  interior 

does not invalidate  the  classical  integrated  form of Ohm's law  (a DC equation).  However, 

surface  charges may still have to be  accounted  for.  Instead  of  accounting for the surfaces  charges 

now  by including  a  capacitance in the  integrated equation, we  can  account for  them  later by 

stipulating  that  the  current in the  integrated  equation  be  the  current  I  in  the  quasi-neutral  medium 

instead of the  terminal  current I' shown  in  Fig.7a. The surface  charges  are  accounted  for  later 

when relating  I to 1'. The  integrated  equation  expressed  in  terms of I  is  the  classical  form of 

Ohm's law Ay=IR with R referring to the DC resistance,  i.e., 

The resistance, between electrodes at S, and S, , describing 
a resistor under DC conditions and  having  the  same geometry 
as the  quasi - neutral region, and a conductivity equal to 0. 

Using (14) to express A y  (=y12-y1) in  terms of the P's and V's, we obtain 

V . - ~ - B V , l n  - = I R .  (::AA) 
As previously  stated,  capacitances  associated  with  boundary  surfaces  may  require  that  we 

distinguish  between I and I' in  Fig.7.  The  importance  of  this  effect  depends on  how fast the 

transient  is.  The  effect  will  be  much  less  important  during  the  gradual  recovery  stage than for  the 

rapid DR collapse. In fact,  analytical  calculations  which do not  distinguish  between I and  I' 

roughly  agree  with  simulation  results [5 ] ,  and  the error is  probably  primarily  from  other 

approximations.  This  suggests  that  we  may  not  have to distinguish  between I and  I'  during  the 

recovery  stage.  However,  it  usually  is  necessary to distinguish  between AV (zV2-Vl) and AV' 

(EVZ'-VI') in Fig.7,  due to voltages  across  other structures in  addition to contact  potentials at 

electrode  boundaries.  For  example, in Fig.7b  there  will  be  a  voltage  across  the DR in  addition to 

contact  potentials  at  the  electrodes.  These  voltages  subtract  out in equilibrium, so that 

AV=AV'=O, but AV#AV' under  non-equilibrium  conditions. It  is therefore  important to 

remember  that  the  voltages in (15) are in the  quasi-neutral  region  at  the  boundaries;  they  are  not 

terminal  voltages  (except for some  special  cases). 
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Because  the  voltages in (15)  are  usually  not  terminal  voltages,  the  analysis  presented  here  is 

analogous  to  finding an equation  describing  only  one  circuit  element  in a circuit  containing 

several  elements. A complete  circuit  cannot be analyzed until we  have equations  describing  all 

circuit  elements,  but  each  analysis of another  circuit  element  is  another  important  tool  for a 

future  analysis of the  complete  circuit.  Similarly,  each  analysis of another  device  region  is 

another  important  tool  for a future  analysis of a complete  device.  One  device  region  was 

analyzed  here.  For a simple  diode  during  the  recovery  stage,  other  “circuit  elements’’  include 

contact  potentials at electrodes,  and an expanding DR  characterized by a moving  DRB.  The 

expanding DR is  not  quantitatively  analyzed in this  paper, so the  present  work is only a tool  for 

future work.  However,  the  expanding  DR  is  qualitatively  discussed  in  Sections VIII and IX. 

VII. Some  Applications of the  Modified  Ohm’s Law 

The  first  application of the  modified  Ohm’s  law  answers  the  question  of  whether a track  is 

conductive.  Note  that  the  classical  conductivity G relates  the  current to the  modified  potential w 
(a  somewhat  abstract  quantity),  while  the type of conductivity  relevant to the  present  question  is 

an effective  conductivity  relating  the  current to the  true  electrostatic  potential cp. The two  types of 

conductivities  can  be  compared by numerically  comparing  the  two  types of potentials.  The 

difference  between  these  potentials  is  the  logarithmic  term  in (14), so we  will  estimate  this  term 

for conditions  under  which  this  term is largest. 

Consider a very  heavy  ion  having  an LET on  the  order  of 40 MeV-cm2/mg. The LET 

determines  the  linear  track  density  (charge  per unit length), but  the  volume  density P depends  on 

how  concentrated  (or  narrow)  the  track  is  assumed to be.  Note  that  after a short  time  (compared 

to the  time  over  which  significant  charge  collection  occurs) of  radial ambipolar  diffusion,  the 

distinction  between an initially-narrow  track  and an  initially-very-narrow  track  diminishes  in  the 

absence of Auger  recombination.  The  radial  profile  approaches a gaussian function, even  if  the 

initial  profile  is  better  described by some  other  function.  Auger  recombination  can  only  further 

reduce  the  density, so it  should  be  sufficiently  conservative  to  neglect  Auger  recombination, 
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assume a gaussian  radial  profile with a 0.1 pm characteristic  radius, and  then  add a little  margin. 

For  such a profile and  an LET of 40, the  maximum  (i.e.,  on  the  track  center  line)  excess  carrier 

density is slightly  less than 1020/cm3.  We  will  add  some  margin  and  call  it 1022/~m3. Assuming 

that  the  doping  density  is  at  least 10'4/cm3 (it is  usually  larger),  the  largest  value of P throughout 

the  quasi-neutral  region  exceeds  the  doping  density by  not  more  than eight  orders of magnitude. 

Note  that (10) gives a smaller A for a p-type  region  than  for an  n-type  region, so we will  assume 

a p-type  region  to  estimate a larger  value  for the logarithmic  term.  The ratio of the  electron to 

hole  mobilities  is  typically  between  one  and  three.  We  will  assume a ratio of three  because  this 

produces a larger  value  for  the  logarithmic  term.  Using  these  conservative  estimates,  the 

difference  between  the  extreme  values of  the  logarithmic  term  (the  largest  value  in  the  quasi- 

neutral  region  minus  the  smallest  value) is about  one-fourth  of a volt. Less conservative 

assumptions  produce a smaller  estimate. The difference  between  the  extreme  values of cp during 

a typical  funneling  process when  the  carrier  density  is  very  large  is  several  volts.  Therefore,  while 

not  highly  accurate,  we do obtain a rough  approximation by replacing Av with Acp in  the 

integrated  equation Av=IR, i.e., the  effective  conductivity  can  be  approximated by the  classical 

conductivity,  at  least for the  purpose of calculating  the  total  resistance  between  boundaries. 

In addition to comparing  the  extreme  variations of the  two  potentials, we  can  also  compare 

more  local  variations  relevant  to  the  point  form  equation (13). We  might  speculate  that  variations 

in  the  logarithmic  term at  different  locations  could  be  important  in  regions  where  the  variation  in 

<p is small  (i.e.,  in  regions  where  the  electric  field is weakest).  However,  such  regions  are  also 

characterized by small  variations in P+A  (small  compared to the  eight  orders of magnitude 

considered  previously), so the  variation  in <p is  still  roughly  the  same as the  variation  in w. In 

fact,  the  longitudinal  variation in \v is precisely  equal to the  Iongitudinal  variation  in cp in regions 

where  the  track  is  longitudinally  uniform. 

It is  concluded  from  the  above  discussion  that, when investigating  charge  collection  from ion 

tracks  during  times  when  funneling  is  strong  (i.e.,  when  there  is a large  voltage  across  the  quasi- 

neutral  region),  the  distinction  between cp and v is  small  enough so that  it  can be ignored  for  the 

purpose of roughly  estimating  the  conductivity.  Therefore,  the  effective  conductivity  relating  the 

current to cp is approximately  the  classical  conductivity 0. Note  that any effects on  mobility,  such 
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as  carrier-carrier  scattering, also affect 0, and  such  nonlinear  effects  will  prevent o from  being 

proportional  to  the  carrier  density.  However,  with  the  exception of those  cases (if such  cases 

exist) in which  nonlinear  effects  are  strong  enough  for 0 to decrease  with  increasing  carrier 

density,  the  denser  track  regions  are  the  most  conductive. It  is  clear  that  conduction  is  not 

confined  exclusively to the  outer  track  regions  where  the  carrier  density  is  less  than  the  doping 

density. 

It now  becomes  easy to see why equipotential  surfaces  in  the  presence of  ion tracks  during 

strong  funneling  are  shaped  like  funnels.  The  conductivity  function  can  be  described as a  highly 

conductive  track  above  a  low-conductivity  region  below  the  track.  The  track  conductivity  is  large 

near  the  track  center  line,  but  smaller  at  larger  radial  distances.  The electric field  in  the  upper 

region  is  therefore  weakest  near  the  center line and  stronger at  larger  radial  distances.  This 

implies  that  equipotential  surfaces  are  further  apart  near  the  center  line  than at larger  radial 

distances,  hence  the  funnel  shapes. The funnel  shape  is just Ohm’s  law. 

Some  other  applications of  the  modified  Ohm’s  law  are  incidental  (and  the  conclusions  are  not 

very original),  but  are  presented as a  matter  of  curiosity  because  they  are so simple. All 

discussions  below  tacitly  assume  that  transients  are  slow  enough so that  we do not  have to 

distinguish  between  I  and I’ in  Fig.7, i.e.,  capacitance  effects  are not important. 

Note  from (15) that  the  current  is  zero  if  and  only  if the left  side  is zero. Therefore,  for  the  most 

general  possible  case  represented in  Fig.7a,  open  circuit  conditions  imply  a AV equal to the 

logarithmic  term.  For  the  purpose of comparison  with  previously  known  results,  we  consider  the 

special case of low-density  conditions  (P1,PZccdoping  density).  Expanding  the  logarithmic  term 

to first  order  in Pl/A and  in Pz/A gives 

This result is not  new [8], but  note  how  easily  it  can  be  derived  from  the  general  result (15). 
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For a final  application,  consider  the  device in Fig.7~ in which  both  active  boundaries  are  ideal 

ohmic  contacts.  Contact  potentials at  the  two contacts  subtract  out, so AV'=AV. Also, P=O at 

both boundaries, so (15)  becomes AV'=IR. We conclude  that  two  ideal  ohmic  contacts  create a 

passive  device  even if an ion  track  liberates  carriers  within.  The  open  circuit  voltage  is  zero  and 

the  short  circuit  current  is  zero.  The  device  is just  a resistor,  but  the  resistance  is  variable  when 

carriers  are  generated  within  the  device.  Incidentally,  this  example  is  another  simple  illustration 

of a current  without a charge  separation. 

VIII. A Future  Application 

An anticipated  future  application of (and  the  primary  motivation for) the present  work  is to 

improve  the  accuracy  of an earlier, simple but crude,  analysis of charge  collection in diodes.  The 

analysis,  which is limited  to  high-density  conditions  (the  carrier  density  greatly  exceeds  the 

doping  density),  calculates  the  gradient of the carrier density  function  at  the DRB by solving the 

ambipolar  diffusion  equation,  and this gradient is then  used to calculate  the  minority  carrier 

diffusion  current.  The  analysis  neglects DIU3 motion  and  equates  total  current  to  twice  the 

minority carrier diffusion  current.  The  latter  statement  is  based on  the  observation  that  if  the DR 

is  reversed  biased,  then,  to  the  extent  that  the DRB can  be  approximated as stationary,  it  blocks 

the  majority  carrier  current.  This  means  that  the  majority  carrier  drift  and  diffusion  currents  have 

the  same  absolute  value  at  the DRB. Under  high-density  conditions,  the  electron  and  hole 

densities  have  nearly  equal  values  and  gradients at  the Dm, so electron  and  hole  drift  currents 

are in  the ratio of the  mobilities,  and  electron  and  hole  diffusion  currents  are in the  ratio of  the 

mobilities.  Therefore,  majority  carrier  drift  equal  to  majority  carrier  diffusion  at  the DRB implies 

that  minority  carrier  drift  equals  minority  carrier  diffusion  at  the DRB. However,  the  two 

minority  carrier  currents  add  to  instead of subtract  from  each  other, so the  total  current  at  the 

DRB is  twice  the  minority  carrier  diffusion  current. 

Limitations  are  discussed  below,  but  it  is  interesting  that,  to  the  extent  that  the  above 

approximations do apply, we  can  think  of current as the  cause  and  the  voltage  across  the  quasi- 

neutral  region  (or  funneling) an effect.  This  terminology  reflects  the  fact  that  the  current  can be 
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roughly  estimated  from an independent  analysis first, without  prior  knowledge of Ay, and  this 

estimate  can  then be substituted  into Aw=R to obtain an estimate of AydR. Physically,  the DR 

responds  to  the  current, so its  voltage  and  the  quasi-neutral  region  voltage  respond to the  current. 

These  simple  concepts  are  sometimes  useful  for  a  low-order  approximation [5], but  this 

approximation  is  not  accurate  enough to properly  distinguish between some  cases  that  are 

distinguishable  in  computer  simulation  results.  Examples of  such cases (the effect of track  length 

and  doping  type)  are  discussed  later  in  this  section,  and  some  other examples (the  effect  of 

changing ion LET,  etc.)  are  mentioned  in  the  next  section. A higher-order  approximation  able to 

properly  distinguish  between  such  cases  must  recognize  a  mutual  interaction  between  voltages 

and  currents.  The  interaction  not  included  in  the  low-order  approximation is through  DRB 

motion. The DIU3 moves as the  DR  expands  during  recovery,  sometimes  very fast as discussed in 

the  next  paragraph.  This  motion  affects  both  minority-carrier  and  majority-carrier  currents.  From 

the  point of  view  of  minority carriers,  a  moving  DRB  resembles  a  moving  vacuum  cleaner, 

which collects  carriers  faster than a  stationary  vacuum  cleaner.  From  the  point of  view  of 

majority  carriers,  the  moving DRB  resembles  a  barrier  that  pushes  them  along  in  front of it as it 

moves,  creating  a  majority-carrier  current.  The  DRB  motion  affects  the current, but  is  itself 

affected by the  voltage  distribution;  hence  there  are  mutual  interactions  that  must  be  included to 

obtain  a  higher-order  approximation. 

Influences  on  and by DRB motion  are  most  striking  when  there  is  a fast partial DR  recovery. 

An example of a fast partial  recovery  is  seen,  from  computer  simulation  results,  when  the  track  is 

long  enough to reach  the  lower  electrode. A simulation  treated  a  simple n'-p device  illustrated  in 

Fig. 1 ,  containing  a  shallow n+ diffusion  above  a 1 0 0  pm  thick  p-type  substrate.  The  track  was 

from  a  normal  incident  center  hit  and  reached the lower  electrode.  The lower track  end  quickly 

clears  away,  producing  a  low-conductivity  region  below  the  track,  but this region is narrow  at 

early  times  after  the  track  formation, so R is small.  The  simulation  shows  a  greatly  collapsed DR 

immediately  after  the  hit,  but a very fast  partial  recovery  occurs, so that  the  DR  quickly  takes  up 

most  of  the device  voltage in response to the  small  value of R. Prior to this partial  recovery,  the 

current  is  considerably  larger than for  a  shorter (35 pm)  track,  although  only for the  very  short 

time  required for the  partial  recovery.  That  there  should  be  a  large  current  prior to the  partial 
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recovery  can be seen  from  either of two  points of  view. The  first  point  of  view  recognizes  that R 

is  small  and A y  is  large  prior  to  the  partial  recovery.  The  second  point of  view  recognizes  that 

the  DRB  is  moving  fast  prior to the  recovery  (the  low-order  approximation,  which  neglects  DRB 

motion,  cannot  distinguish  between  a  long  track  and  a  shorter  track at  such  early  times).  Each 

point of  view is  valid,  but  neither  point of view,  taken  by  itself  without  the  other,  provides 

enough  information  to  completely  solve  for  all  quantities. 

A  numerical  comparison  between  the  two  cases  is  shown in Fig.8,  which  plots  accumulated 

collected  charge  Q(t) as a  function of time t for  each of the  two  track  lengths.  The 35 pm  case  is 

the  same as the  n+-p  case  discussed  in  Section IV, and  the 1 0 0  pm case  represents  identical 

conditions  except  for  track  length. The partial  recovery for the  long  track  occurs  during  the  first 

few  tenths of a ns,  and  accounts for the  difference  between  the  two  curves  at  the  end  of this time. 

After  this  time  (but  before 10 ns), the  currents  are  nearly  equal  for  the  two  cases, so the 

difference  between  the  two  curves  remains  roughly  constant  in t. This  roughly  constant  difference 

is the  extra  charge  that  the  long-track  case  collected  during  the fast and  brief  partial  recovery.  At 

very  late  times  (after  about 10 ns),  the  difference  between  the  two  curves  increases  again, for an 

obvious  reason  having  nothing to do with  DRB  motion;  some  carriers  initially  liberated  on  the 

more  remote  sections  of  the  long  track  have  had  enough  time  to  reach  the D M .  The  low-order 

approximation  can  predict this, but it cannot  predict  the  noticeable  difference  between  the  two 

curves  produced by the  partial DR recovery  at  the  earlier  times. 

Another  example of a  fast  partial DR recovery is seen by going back to the 35 pm  track,  but 

interchanging  p  and n types  in  the  diode.  This  is  the  same as the  p+-n case described  earlier  in 

Section IV. The DR width  at 0.6 ns is about 1 pm for the  p+-n case,  compared to about 0.1 pm 

for the  n+-p case, so DRB motion  at  early  times is much faster  for  the former case.  Because of 

this  fast  DRB  motion,  we  should  not  expect  the  low-order  approximation to be  adequate  for  the 

p+-n  case  during  the  earliest  times.  However,  this  approximation may (or may  not, this remains to 

be  seen)  be  roughly  correct  at  later  times  after  the  initial  partial  recovery. It is therefore 

interesting to determine  what  the  low-order  approximation  predicts  with  regards to how  the  two 

cases  should  compare.  Simulations  used  the  same  electron  mobility for the  two  cases,  and  the 

same  hole  mobility  for  the  two  cases.  Therefore,  the  low-order  approximation,  using  the same 
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input  data as the  simulations, uses  the  same  ambipolar  diffusion  coefficient for both  diode  types. 

The low-order  approximation  does  not  make  any  other  distinctions  between  the  two  cases  when 

calculating  the  gradient of the  carrier  density  function, so the  same  gradient  is  calculated for both 

cases.  However,  the  current  is  calculated by multiplying  the  carrier  density  gradient by  2qDh for 

the  p+-n  case,  and by  2qDe for  the  n+-p  case.  The  diffusion  coefficients  used in the  simulations 

are in the  ratio of DJDhs2.6, so the  low-order  approximation  predicts  the  currents for the  two 

cases  to  be  in  the  ratio of about  2.6,  with  the  n+-p  case  producing  the  larger  current. 

Before  comparing  the  above  prediction  to  simulation  results, we  make another  prediction  from 

A\lr=IR. Although  expected to be  more  valid  than  the  low-order  approximation,  this  equation 

(taken by itself  without  any  other  analysis)  suffers  from  a  lack of  input information; we do not 

know Av most  of the time.  However, this equation  can  make  a  prediction  at  sufficiently  early 

times.  Simulations  show  that,  like  the  n+-p  case,  the  p+-n  case  is  also  characterized by nearly  all 

device  voltage  being  across  the  quasi-neutral  region  at  the  start of the  recovery  stage,  before  the 

fast  partial  recovery.  (Note  that  this  applies to bulk  diodes  considered  here,  but  does not apply to 

epi  diodes  considered  in  an  earlier  paper [5], because  another  device  region  supports  much of the 

voltage  for  the  epi  case.)  Using A\lr=AV, we conclude  that A\lr is  about  the  same for the  two  cases 

at  sufficiently  early  times, so the  ratio of the  currents  for  the  two  cases is the  ratio of R for the 

two  cases.  A  rough  estimate  for  this  ratio  is  obtained by imagining  the  ion  track to be  a  short 

surrounded by a  spreading  resistance.  A  better  estimate  would  include  track  resistance  (the  same 

for  the  two  cases)  and  produce  a  ratio  slightly  closer  to  1 than we  will calculate  here,  but  a  rough 

estimate  equates  the  ratio of the  currents  to  the  ratio of the  spreading  resistances  described by the 

equilibrium  carrier  densities.  The  ratio of these  resistances  is  the  ratio of electron  mobility to hole 

mobility.  Therefore, we expect  the  ratio of the  currents for the  two  cases to be  roughly  2.6.  This 

is the  same  ratio  calculated  in  the  previous  paragraph,  except  that  the  two  cases  are  reversed,  i.e., 

the  p+-n  case  is  predicted to produce  the  larger  current. 

The  predictions  for  the  ratio of the  current for the  n+-p case to  the  current for the  p+-n  case  are 

summarized as follows.  The  low-order  approximation,  which  is  expected to be  wrong  at  early 

times  (because of a  fast DRB motion)  but  is  credible  at  later  times,  predicts  a  ratio of about  2.6. 

The  modified  Ohm’s  law  predicts  a  ratio of  roughly  112.6  at  sufficiently early  times, but is 
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inconclusive  (because we do not  know Ay) at later  times.  The  currents  calculated by computer 

simulations  are  compared in Fig.9,  which  shows  that  the  ratio  roughly  agrees  with  the 1/25 at 

early  times,  and  roughly  agrees with the 2.6 at  later  times. 

A future  analysis  able  to  account for influences on  and  by DRB motion  requires  enough 

equations  to  predict how  the  device  voltage  is  divided  between  the DR and  quasi-neutral  region. 

This  includes  equations  describing  the DR, such as (A9)  in [7], and  equations  describing  the 

quasi-neutral  region,  such as (15)  provided in the  present  paper. 

IX. A Suggested  Alternative to Funnels 

The  intention  of  this  section  is to discourage  the  practice of describing  charge  collection  in 

terms of funnels,  and to suggest an alternate  description. A distinction  is  made  here  between 

funneling  (a  process), a funnel  length  (a  number),  and a funnel  (an  object).  The  process  is  well 

established,  and  the  historical name seems  appropriate  because  funneling  produces  funnel-shaped 

equipotential  surfaces. The number  can  be  defined  in  terms of collected  charge,  although  it  is  not 

essential  that we do so, because  collected  charge  can  also  be  discussed  using  more  basic 

terminology,  e.g.,  in  terms of collected  charge  normalized in  any convenient way. The object is 

most  poorly  defined.  Unlike DRBs, which  can  be  identified  in  computer  simulation  results  at 

each  point  in  time  during  the  recovery  stage,  funnels  cannot. At any given  time,  each  point in the 

device  lies  on  some  equipotential  surface.  We may see a few  such  surfaces or a lot in a figure, 

depending on  the  resolution,  but  every  point  in  the  device is on one.  Which  one  of  these  funnel- 

shaped  equipotential  surfaces  is  the funnel? Some investigators  describe a funnel as a strong- 

field  drift  region  that  promptly  collects  all  charge  contained  within.  However,  the  electric  field is 

actually  weak  along a high-density  track.  Occasionally,  we  find  in  the  literature a figure  showing 

equipotential  surfaces  calculated by simulations,  with  one  such  surface  identified as the  funnel. 

However,  the  identification  is  arbitrary  and an inspection  of  the  spacing  between  equipotential 

surfaces  shows  that  regions  identified as funnels in  the  literature  are  actually  regions  where  the 

electric  field  is  weakest  (the  electric  field  is  weakest  where  equipotential  surfaces  are  farthest 

apart).  Instead of a strong-field  drift  region, a better  description  is a weak-field  ambipolar  region. 
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A  funnel  can  only  serve as some  kind  of  symbolic  description. A more literal  description  would 

lead  to  a  better  understanding  of  charge  collection if it is  simple  enough to be  understood,  at  least 

qualitatively.  Although  quantitatively  difficult,  a  qualitatively  simple  literal  description  is 

proposed  below. 

For  a  simple  but  literal  qualitative  description, we first  consider  initial  conditions.  Details of  the 

processes  occurring  during  the  collapse  stage  may  not  yet  be  well  understood;  it  is  not  even  clear 

yet  whether  there  is a DRB during  the  initial  charge  re-arrangement.  However, by 10 ps  we  are 

already  sufficiently far into  the  recovery  stage so that  analytical  calculations  of  collected  charge, 

which  assume  conditions  describing  the  recovery  stage,  agree  with  simulation  results [5]. 

Furthermore,  computer  calculations of collected  charge  show  only  a  small  amount of charge 

collected  during  this  time [5,9]. Therefore, ifour interest is in  collected  charge  accumulated up to 

a given  time (as opposed to some  other  possibly  interesting  quantities,  such as peak  current  or 

current  rise  time),  and ifour accuracy  requirements  are  satisfied  when the error in  this  charge  is  a 

small  fraction of  the  total  amount  of  charge  that  will  eventually  be  collected,  then  we  can  assume 

that  the  recovery  stage  applies  to  the  entire  charge-collection  process.  During  this  stage,  there  is  a 

DIU3 as illustrated in Fig.2. 

Charge  collection  during  the  recovery  stage  can  be  described by starting  with  a  low-order 

approximation  and  then  describing  corrections  that  must  be  made  to  obtain  a  higher-order 

approximation.  The  low-order  approximation  neglects  DRB  motion.  During  high-density 

conditions  (the  carrier  density  greatly  exceeds  the  doping  density at  the  locations  on  the  DRB 

where  most  of  the  current  flows),  the  total  current  is  twice  the  minority  carrier  diffusion  current. 

At  later  times,  after  the  track  dissipates to the  extent  that  high-density  conditions  are  replaced by 

the  opposite  extreme  (low-density  conditions),  the  total  current  is just the  minority  carrier 

diffusion  current. 

A  correction  needed to improve  accuracy  is to include  the  effects of  DRB motion.  This 

correction  explains  the  influence  that  various  parameters  (e.g.,  ion  LET,  doping  density,  etc.) 

have  on  the  normalized  (to  ion LET or linear  track  density)  collected  charge or current. The 

influence of doping  density  is  particularly  predictable  because  there  are  no  competing  effects;  all 
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effects are in the  same  direction.  Increasing  the  doping  density  decreases  mobility  and  lifetime. 

These  two  effects  reduce  the  minority  carrier  diffusion  current,  and  the  low-order  approximation 

can  account for this.  However,  increasing  the  doping  density  also  tends to reduce  the  current  for 

another  reason,  which  the  low-order  approximation  cannot  account  for. This is due  to  a  decrease 

in DFU3 motion [SI, because  the  final  width  that  the DR approaches  during  recovery  is  less.  The 

influence of  ion  LET is  slightly  more  complicated,  because  there may  be competing  effects. If the 

LET  is  reduced,  but  still  large  enough for high-density  conditions  to  persist  for  an  extended  time, 

the  first  (earliest  in  time)  effect  seen is an increased  (compared  to  a  higher-LET case) normalized 

current,  because of a  faster  moving  DRB [5]. The D M  moves  faster  because  the DR can  recover 

faster  from  the  lower  LET  ion.  A  competing  effect,  which  is  important  at  a  later  time, is that 

high-density  conditions  have  a  shorter  duration.  Depending  on  the  individual  case,  late  times 

might  show  the  normalized  collected  charge (as well as the  normalized  current) to be  smaller for 

the  lower-LET  case.  Changing  doping  types  can  also  introduce  competing  effects for bulk  diodes. 

Comparing  the  p+-n  case to the  n+-p case, we find  that  the  former  case  may  have  an  early 

tendency  to  produce  a  larger  current  because of a  fast  moving DRB, but  a  later  tendency to 

produce  a  smaller  current  because of a  smaller  minority  carrier  diffusion  coefficient (as discussed 

in the  previous  section).  Increasing  the  bias  voltage  tends  to  increase  the  current  at  early  times, 

because  the DRB moves  faster.  Increasing  the  track  length  has  one  obvious  effect  at  late  times, 

which  can  be  predicted  by  the  low-order  approximation,  but  it  also  has  a less obvious  effect  at 

early  times,  which  cannot  be  predicted by the  low-order  approximation.  The  long  track  produces 

a  larger  current  at  early  times  due to a  faster DR recovery, as discussed  in  the  previous  section. 

Additional  work  is  needed to convert  the  above  qualitative  discussion into a  quantitative  model, 

but  the  qualitative  discussion  may  add  some  physical  insight into the  problem of charge 

collection in diodes. 

X. Summary 

This work is  intended to assist  future  theoretical  modeling  efforts by providing  one quantitative 

relationship  which  is  necessary  (though,  not  sufficient)  to  determine  how  a  device  voltage  is 
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divided  between  distinct  regions. This is (15), which  relates  the  carrier  density  and  potential  to 

the  current  through  the  quasi-neutral  region. This equation  includes  all currents; electron  and 

hole,  drift  and  diffusion.  While  this  one  relationship  is  not  enough  for  a  quantitative  analysis of a 

complete  device,  a  fairly  complete  qualitative  discussion was given for charge collection in 

diodes. 
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FIGURE CAPTIONS 

Fig. 1 : A simple  reverse-biased  diode  containing  an  ion  track. 

Fig.2: A plot of carrier  density  illustrating a DR and  quasi-neutral  region  separated by a DRB. 

Fig.3: A plot of carrier  density  for  the  n+-p  diode  at  0.6  ns  after  the  formation of a 35 pm  track. 

Fig.4: A plot of potential  for  the  n+-p  diode  at 0.6 ns  after  the  formation of a  35  pm  track. 

Fig.5: A plot of carrier  density  for  the  p+-n  diode  at 0.6 ns  after  the  formation of a 35 pm  track. 

Fig.6: A plot of potential  for  the  p+-n  diode  at 0.6 ns  after  the  formation  of  a  35  pm  track. The 
sign  is  reversed  for  a  more  direct  comparison  with  the  other  doping  type. 

Fig.7: The  most  general  case  having  two  active  boundaries  (a)  includes  many  special  cases,  such 
as a  diode  (b),  a  uniformly-doped  substrate  between  two  ohmic  contacts  (c),  and  a MOS 
capacitor  (d). 

Fig.8:  Collected  charge  versus  time  produced by two  track  lengths in an n+-p  diode. 

Fig.9:  Current  versus  time  produced  by  a  35  pm  track  in  two  types  of  diodes. 
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